
VisTrails in UV-CDAT

Emanuele Santos

1

Thursday, June 7, 12

Agenda
• Provenance features available in UV-CDAT
• How to include plot types in UV-CDAT
• Scripting support

2

Thursday, June 7, 12

Preliminaries: Naming conventions

3

project

plot

visualizationsheet

variable

spreadsheet
cells

Thursday, June 7, 12

Provenance features in UV-CDAT

4

Thursday, June 7, 12

Projects
• Files that contain the

provenance of the
visualizations
‣workflows
‣where in the

spreadsheet the
visualizations are
displayed
‣ execution logs

5

Thursday, June 7, 12

Projects toolbar

6

create
new

project
open a
project

save the
selected
project

close the
selected
project

Thursday, June 7, 12

Project organization: sheets and visualizations
• A project contains sheets
• A sheet contains

visualizations
• When creating a

visualization it tells where
in the spreadsheet it is
located

7

Thursday, June 7, 12

Project organization: sheets and visualizations
• A project contains sheets
• A sheet contains

visualizations
• When creating a

visualization it tells where
in the spreadsheet it is
located

7

Thursday, June 7, 12

Project organization: sheets and visualizations
• Sheets can be created

using the Create a new
sheet button in the
Spreadsheet toolbar

8

Thursday, June 7, 12

Project organization: sheets and visualizations
• Sheets can be removed

using the Close Tab
button on the sheet tab

9

Thursday, June 7, 12

Project organization: sheets and visualizations
• The number of rows and

columns can be changed
using the spin buttons

10

Thursday, June 7, 12

Project organization: sheets and visualizations
• Sheets and visualizations

can be named
• To name a sheet,

double-click the title of
the sheet tab at the top
of the spreadsheet

11

Thursday, June 7, 12

Project organization: sheets and visualizations
• The sheet name will be

updated in the projects
panel

12

Thursday, June 7, 12

Project organization: sheets and visualizations
• To name a visualization,

double-click the
visualization name in the
Projects panel

13

Thursday, June 7, 12

Project organization: sheets and visualizations
• A new category named

visualizations is added to
the Projects and will list
all named visualizations

14

Thursday, June 7, 12

Project organization: sheets and visualizations
• You can copy

visualizations by
dragging them from the
Projects panel to the
sheet location where they
should be displayed

15

Thursday, June 7, 12

Project organization: sheets and visualizations
• The Projects panel will be

also updated to indicate
that the same
visualization is also
displayed in cell A2

16

Thursday, June 7, 12

Editing a visualization: creating overlays in VCS
visualizations

17

• Just drag other plot type
into the cell

Thursday, June 7, 12

Editing a visualization: creating overlays in VCS
visualizations

17

• Just drag other plot type
into the cell

Thursday, June 7, 12

Editing a visualization: changing visualization
parameters

18

Configure visualization button

Thursday, June 7, 12

Editing a visualization

19

• Workflow is updated
based on the changes

Thursday, June 7, 12

Accessing the provenance of a visualization

20

view provenance button

Thursday, June 7, 12

Accessing the provenance of a visualization

21

The VisTrails Builder shows the workflow
of the selected visualization

Thursday, June 7, 12

Accessing the provenance of a visualization

22

The VisTrails Builder shows the workflow
of the selected visualization Overlay

Thursday, June 7, 12

Accessing the python script that generates a
visualization

23

view source button

Thursday, June 7, 12

Accessing the python script that generates a
visualization

24

• A self-contained script is
generated based on the
workflow of the
visualization

• To execute just call UV-
CDAT’s python with the
script filename

Thursday, June 7, 12

How to include plot types in UV-CDAT

25

Thursday, June 7, 12

Workflows, Variables and Plots
• Users are able to create plots in UV-CDAT by dragging variables and

plot types to a spreadsheet cell
• Behind the scenes, two separate subworkflows (one for the

variables and one for the plot types) are being created and
connected to form the workflow for the visualization

• That workflow is then added to the provenance, executed and
displayed in the spreadsheet cell

26

Thursday, June 7, 12

A complete workflow

27

Variables
subworkflow

Thursday, June 7, 12

Variables and Operations

28

Variable

CDMSVariablePVVariable CDMSVariableOperation

CDMSUnaryVariableOperation

CDMSBinaryVariableOperation

CDMSNaryVariableOperation

Thursday, June 7, 12

Adding a new plot: Overview
• Create a VisTrails Package
• Create subworkflows for the plot types
• Expose the new plots in the Plots panel

29

Thursday, June 7, 12

Building a VisTrails package
• The first step is to build a VisTrails Package for the library you want

to integrate
• Instructions on how to build a package are available on the VisTrails

user's guide (http://www.vistrails.org/usersguide/dev/html/
packages.html)

• If you want to seamlessly support the variables loaded in the
Variables panel, you need to make your package support the
CDMSVariable module from the uvcdat_cdms package

• This will make possible for users to use your package with the
already loaded variables

• Add this package to application.py required packages list to make
sure it will always be enabled

30

Thursday, June 7, 12

http://www.vistrails.org/usersguide/dev/html/packages.html
http://www.vistrails.org/usersguide/dev/html/packages.html
http://www.vistrails.org/usersguide/dev/html/packages.html
http://www.vistrails.org/usersguide/dev/html/packages.html

Subworkflows for the plots
• Every plot type has a corresponding workflow
• There are two ways of doing this:
‣Store the subworkflow (it will be the workflow minus the variables

subworkflow) in a vistrail file and load it
- DV3D follows a strategy similar to this

‣Build the subworkflow dynamically when necessary
- VCS follows this strategy

• If the subworkflows are simple (3 to 4 modules) we recommend to
create them dynamically

31

Thursday, June 7, 12

Subworkflows for the plots
• At the moment of the workflow creation, the plot type will know in

which row and column in the spreadsheet the visualization should
be displayed

• The plot type will be also given a subworkflow of Variables
• A complete workflow must be created, including the CellLocation

with the position sent and also added to the provenance using the
provided API
‣All this is done by using a PipelineHelper class.

32

Thursday, June 7, 12

Exposing the Package in the Plots Panel
• UV-CDAT keeps a global registry of plot types that is loaded at

startup
• The plot registry is used to populate the Plots panel in the Main

Window
• Create a folder in core/uvcdat/plots for your plot type package and

add a section to core/uvcdat/plots/registry.cfg file for your package

33

[PackageName]
codepath = <folder_name>
config_file = <name_of_config_file in folder_name> #usually registry.cfg
helper = <codepath to PipelineHelper class> #example:
 # packages.mypackage.pipeline_helper.MyPipelineHelper

Thursday, June 7, 12

Exposing the Package in the Plots Panel
• Inside the folder created for the plot type package, create another

registry.cfg file listing all the plot types that should be loaded in the
panel

• Write a section for each plot type. Each plot type can have a .vt file
(if you decide to store the workflows in a .vt file) and a configuration
file

34

Thursday, June 7, 12

Exposing the Package in the Plots Panel

35

[global]
cellnum = 1
filenum = 1
varnum = 1
workflow_tag = Simple Plot
dependencies = edu.utah.sci.vistrails.vtk, edu.utah.sci.eranders.ParaView
filename_alias1 = filename
varname_alias1 = varname

[cell1]
celltype = PVCell
row_alias = row
col_alias = col

Thursday, June 7, 12

ProjectController class
• UV-CDAT is based in the concept of Projects
• Every project has its own provenance and its own project controller.
• At any moment in time there is only one active project, and

consequently, only one active controller.
• The ProjectController is responsible for the interface between the

GUI Actions and the provenance and the plot packages
• It will tell the plot types when and where to build the workflows
‣ It will use the pipeline helper of the plot type package the user

selected to use

36

Thursday, June 7, 12

ProjectController Interaction

37

ProjectController
DV3D

VCS

PipelineHelper

PipelineHelper

GUI Actions

Project
VisIt PipelineHelper

Thursday, June 7, 12

PipelineHelper class
• Responsible for manipulating the workflows for your plots and to

update the provenance information accordingly
• Base class

• In this class, you should reimplement the following static methods:
‣ build_plot_pipeline_action()
‣ load_pipeline_in_location()
‣ build_python_script_from_pipeline()
‣ copy_pipeline_to_other_location()
‣ show_configuration_widget()

38

packages.uvcdat_cdms.pipeline_helper.CDMSPipelineHelper

Thursday, June 7, 12

Changing plot parameters
• Package developers can implement their own widgets to change

parameters
‣ VCS implements its own widget
‣DV3D also implements its own widgets but they are available in

the spreadsheet cell
‣PVClimate uses the default mechanism which is based on aliases

- Create an alias for each configurable parameter and UV-CDAT
will display a widget with all configurable parameters

- Provenance is also captured automatically by generating
changing parameter events

39

Thursday, June 7, 12

Scripting support

40

Thursday, June 7, 12

Two types of scripting

41

GUI Actions

Load variable ts
Load variable TS
Regrid TS according to ts
Subtract ts from the regridded variable
Drag the variable resulted from the
 subtraction to the spreadsheet cell
Drag Isofill:ASD plot type to the
 spreadsheet cell

Produced workflow Python script

a)

Load variable rlut
Drag variable rlut to the spreadsheet cell
Drag Hovmoller Slicer plot type to the
 spreadsheet cell

b)
from api import load_workflow_as_function
proj_file = '/projects/hovmoller.vt'
vis_id = 3
vis = load_workflow_as_function(proj_file,
 vis_id)

…
cdmsfile = cdms2.open('/data/p101-512.nc')
ts = cdmsfile('ts')
ts = ts(lat=(-89.0, 89.0), squeeze=1,
lon=(1.25, 358.75), time=('1-1-16
12:0:0.0', '1-1-16 12:0:0.0'),)
cdmsfile = cdms2.open('/data/
h0.301-02.nc')
TS = cdmsfile('TS')
TS = TS(lat=(-88.927735352295898,
88.927735352295898), squeeze=1, lon=(0.0,
358.59375), time=('301-3-1 0:0:0.0',
'301-3-1 0:0:0.0'),)
regrid_TS_ts = TS.regrid(ts.getGrid())
sub_regrid_TS_ts_ts = regrid_TS_ts-ts
canvas = vcs.init()
gmIsofill = canvas.getisofill('ASD')
…

fine-grained

coarse-grained

Thursday, June 7, 12

Scripting support
• Coarse-grained script is supported by default
• Fine-grained script support
‣ Each module needs to implement a to_python_script() method
‣build_python_script_from_pipeline() needs to be implemented

in the PipelineHelper class
- the default implementation will do a topological sort on the

workflow graph and call the to_python_script() method of each
module

42

Thursday, June 7, 12

